Какие витамины синтезируются в тканях

Какой витамин синтезируется кожей

Витамины молодости кожи. Какие витамины сохранят молодость кожи лица. Женский сайт InMoment.ru

Кожа лица долго выглядит свежей, если получает достаточно витаминов, сохраняющих её молодость.

Какие же именно витамины нужны для того, чтобы лицо оставалось молодым как можно дольше? Дело в том, что витамины не разделяются таким образом: и для кожи лица, и для кожи тела они нужны одинаковые – те самые, которые поддерживают наше здоровье. Витаминов, без которых мы можем обойтись, не существует — просто одни витамины синтезируются в организме, а другие – нет; одни разрушаются быстрее, а другие – медленнее; есть витамины, способные накапливаться, а есть и такие, которых нам требуется очень мало.

Витамины-антиоксиданты

Антиоксиданты относятся к тем витаминам, которых нам нужно много – это витамины A, E и C, и при их нехватке кожа лица стареет очень быстро.

Наше лицо в любое время года открыто, и на него действуют все негативные факторы по очереди: жара, яркое солнце, повышенная сухость или дождь, снег, мороз, сильный ветер; прибавьте сюда экологию больших городов, и станет ясно, почему клетки кожи лица быстро разрушаются. Витамины-антиоксиданты не дают накапливаться в коже свободным радикалам, способствуют образованию коллагена, предотвращают шелушение, ускоряют заживление мелких повреждений – ранок, трещинок, кровоподтёков и т.д.

Витамин молодости

Витамины группы B требуются женщинам в большем количестве, чем мужчинам — именно эти витамины разрушаются при стрессе и теряются в «критические дни», так что восполнять их регулярно необходимо. Так, нехватка витамина В6 может вызвать дерматит, а нехватка витамина В2 делает кожу бледной и землистой; дефицит витамина В1 вызывает раннее старение; без витамина В9 кожа становится беззащитной перед агрессивными воздействиями среды.

витамин Вт (карнитин);

витамин F (полиненасыщенные жирные кислоты).

Нужно помнить, что практически все витамины, полученные искусственным путем, прошли определенную техническую обработку, и после их приема беременными обнаруживаются антитела, что в дальнейшем приводит к аллергическим проявлением у новорожденных.

Витамин А (ретинол)

Физиологическая функция: принимает участие в ряде окислительно-восстановительных процессов, обеспечении функции зрения, процессах роста и регенерации тканей; усиливает иммунитет.

Суточная доза: 1–2,5 мг витамина А или 2–5 мг бета-каротина (провитамина А).

Извне в организм поступает со следующей пищей: яичный желток, молоко, сметана, сливки, красно-мякотные овощи (морковь, томаты, перец и др.)

В организме депонируется в печени. В норме печень человека содержит около 20 мг витамина на 100 г своего веса.

Гиповитаминоз проявляется в нарушениях зрения в сумерках и при низкой освещенности; торможении процессов регенерации тканей при травмах; специфических изменениях кожи и слизистых оболочек с тенденцией к сухости и ороговению. Характерные признаки недостатка: бледность, сухость и шелушение кожных покровов; предрасположенность к образованию угрей и фурункулов; ломкость и расслоение ногтей; повышенная утомляемость.

Витамин D (антирахитический, кальциферол)

Физиологическая функция: участвует в обмене кальция, фосфора и магния; влияет на состояние эндокринной системы, формирование скелета и зубов у детей. Выводит из организма свинец.

Источниками витамина D являются: сливочное масло, желток яйца, растительные масла, дрожжи.

В организме синтезируется из холестерино-подобных веществ, входящих в состав кожи человека, путем облучения ультрафиолетом. Избыток накапливается в печени.

Витамин D является уникальным — это единственный витамин, действующий и как витамин, и как гормон. Как витамин он поддерживает уровень неорганического Р и Са в плазме крови выше порогового значения и повышает всасывание Са в тонкой кишке.

В качестве гормона действует активный метаболит витамина D — 1,25-диоксихолекациферол, образующийся в почках. Он оказывает влияние на клетки кишечника, почек и мышц: в кишечнике стимулирует выработку белка-носителя, необходимого для транспорта кальция, а в почках и мышцах усиливает реабсорбцию Ca++.

Витамин D3 влияет на ядра клеток-мишеней и стимулирует транскрипцию ДНК и РНК, что сопровождается усилением синтеза специфических протеидов.

Однако роль витамина D не ограничивается защитой костей, от него зависит восприимчивость организма к кожным заболеваниям, болезням сердца и раку. В географических областях, где пища бедна витамином D, повышена заболеваемость атеросклерозом, артритами, диабетом, особенно юношеским.

Он предупреждает слабость мускулов, повышает иммунитет (уровень витамина D в крови служит одним из критериев оценки ожидаемой продолжительной жизни больных СПИДом), необходим для функционирования щитовидной железы и нормальной свертываемости крови.

Так, при наружном применении витамина D3 уменьшается характерная для псориаза чешуйчатость кожи.

Есть данные, что, улучшая усвоение кальция и магния, витамин D помогает организму восстанавливать защитные оболочки, окружающие нервы, поэтому он включается в комплексную терапию рассеянного склероза.

Пиридоксин повышет кислотность желудка, поэтому противопоказан при язве желудка и 12-перстной кишки.

Витамин В12 (цианокобаламин)

Содержится в пище животного происхождения: печень, почки, икра, яйца, сыр, молоко, творог, мясо, рыба.

Этот витамин синтезируется микрофлорой нашего кишечника.

Он является фактором роста, необходим для нормального кроветворения.

Применяетсяпри анемии, злокачественном малокровии, дистрофии у новорожденных, лучевой болезни, заболеваниях печени, полиневритах, радикулитах, мигрени и др. заболеваниях.

Витамин Вс (фолиевая кислота)

Синтезируется микрофлорой кишечника, содержится в свежих овощах, печени и почках животных.

Применяетсяпри анемии, лейкопении, хроническом гастрите, туберкулезе кишечника, эпилепсии.

Этот витамин необходимо применять женщинам до зачатия ребенка и на протяжении всей беременности, особенно на ее ранних сроках.

Рецептор витамин D (VDR) выполняет в коже и некоторые другие функции, не связанные с 1,25-дигидроксивитамином-D3. Например, VDR играет важную роль в регулировании роста зрелых волосяных фолликулов. При некоторых мутациях VDR нарушается регуляция активность соответствующего гена, что приводит к таким аномалиям развития волосяного фолликула у мышей и в организме человека, как очаговая или полная алопеция (выпадение волос). VDR также является опухолевым супрессором. Рецептор VDR принадлежит к тем немногим факторам, которые выполняют две указанные выше функции. Кроме того, 1,25-дигидроксивитамин-D3 является мощным иммуномодулятором кожи.

Некальциемические эффекты витамина D

В 1979 году было обнаружено, что большинство тканей и клеток организма содержат [3H]-1,25(OH)2D3, что стало новой захватывающей главой в исследовании многочисленных биологических функций витамина D. Известно, что 1,25(OH)2D взаимодействует с определённым рецептором ядра клетки, аналогичным рецепторам других стероидных гормонов. После проникновения 1,25(OH)2D в клетку вещество через сеть микротрубочек транспортируется к ядру и после попадания в ядро связывается с рецептором витамина D (VDR). Затем это соединение вместе с X-рецептором ретиноевой кислоты формирует гетеродимерный комплекс, который «ищет» специфические последовательности ДНК, «чувствительные» к витамину D. Как только комплекс 1,25(OH)2D3-VDR-X-рецептор ретиноевой кислоты связывается с D-витамин-чувствительным элементом ДНК, к нему присоединяются различные транскрипционные факторы, включая DRIP, активирующие D-витамин чувствительный ген (рис. 5).

Рисунок 5. Схематическое изображение механизма действия 1,25(OH)2D в различных клетках-мишенях, вызывающего разнообразные биологические реакции.

Свободная форма 1,25(OH)2D3 попадает в клетку-мишень и взаимодействует с её ядерным рецептором VDR, который при этом фосфорилируется (Pi). 1,25(OH)2D-VDR-комплекс вместе с Х-рецептором ретиноевой кислоты (RXR) образует гетеродимер, который, в свою очередь, взаимодействует с D-витамин-чувствительным элементом (VDRE). В результате повышается или ингибируется транскрипция D-витамин-чувствительных генов, в том числе отвечающих за синтез кальций-связывающего белка (CABP), эпителиальных кальциевых каналов (ECaC), 25(OH)D-24-гидроксилазы (24-OHase), рецептора активатора лиганда ядерного фактора-kB (RANKL), щелочной фосфатазы (alk PASE), простат-специфического антигена (PSA) и паратгормона (РТН).

Рецепторы VDR имеются в тонком и толстом кишечнике, остеобластах, активированных Т- и В-лимфоцитах, β-островковых клетках и большинстве других органов, в том числе в мозге, сердце, коже, половых железах, простате, молочной железе и мононуклеарных клетках. Одним из первых исследований, посвящённых такой широкой распространённости в тканях организма рецепторов VDR, стала работа Танака (Tanaka) и его коллег, сообщивших, что лейкозные клетки мышей (М-1) и человека (HL-60), имеющие рецептор VDR, среагировали на применение 1,25(OH)2D3. Инкубация этих клеток с 1,25(OH)2D3 не только ингибировала их пролиферацию, но и стимулировала дифференцировку лейкозных клеток в зрелые макрофаги. В последующих исследованиях Суда (Suda) и его коллег показали, что мыши, страдающие M-1-лейкозом выжили в течение более длительного времени, если они получали 1α-гидроксивитамин-D3 (аналог 1,25(OH)2D3).

Данные исследований были немедленно апробированы, чтобы определить, может ли 1,25(OH)2D3 быть использован для лечения лейкемии. К сожалению, результаты оказались негативными, поскольку препарат вызвал значительную гиперкальциемию, и хотя у некоторых из пациентов наблюдалась ремиссия, все, в конце концов, умерли в бластной фазе.

Хотя 1,25(OH)2D3 оказался неэффективным в качестве противоопухолевого агента, исследования подтвердили клиническую выраженность его антипролиферативной активности в лечении псориаза. После применения 1,25(OH)2D3 отмечалось заметное торможение роста кератиноцитов с рецептором VDR и индуцировалась их дифференцировка. Первоначальные клинические испытания с местным применением 1,25(OH)2D3 продемонстрировали значительное уменьшение шелушения, эритемы, толщины налёта на обработанных участках. К тому же, на них не наблюдалось каких-либо неблагоприятных побочных эффектов. В результате были разработаны три аналога, в том числе кальципотриен, 1,24-дигидроксивитамин-D3 и 22-окси-1,25-дигидроксивитамин-D3, которые продемонстрировали клиническую эффективность при лечении псориаза. На сегодняшний день во всём мире первоочередным методом лечения псориаза является местное применение активированного витамина D.

• Вегетарианцы. Отсутствие животной пищи не всегда в должной мере восполняется пищей растительной. Рискуют строгие вегетарианцы сильно, так как нет источника для синтеза витамина при равных условиях. Вывод: увеличить количество растительной пищи, содержащей необходимое сырьё для синтеза витамина D – грибы, петрушку, люцерну, крапиву, хвощ. Не забывайте, что содержание провитаминов группы D в растительной пище крайне низкое, и усваиваются они лучше всего в сочетании с растительными (или животными) жирами. Старайтесь заправлять салаты из сырых трав и овощей маслами, содержащими большое количество витамина Е: соевым, хлопковым, нерафинированным подсолнечным или оливковым, содержащим кроме витамина Е омега-3 и омега-9 жирные кислоты.

Витамины, которые мы получаем только с пищей

Некоторые витамины совсем не вырабатываются нашим организмом. К ним относятся витамины А, Е,С, некоторые витамины группы В. Но это не означает, что это «необязательные» витамины. Они играют очень важную роль в функционировании нашего организма и их нехватка может стать причиной множества проблем со здоровьем. Поэтому мы должны заботиться о «бесперебойном» поступлении этих веществ в наш организм.

Присутствует в молочных продуктах, свежих яйцах, морепродуктах, особенно – в печени рыб. Овсяная каша и картофель содержат достаточное количество этого витамина, как и петрушка.

Важно понимать, что некоторые из указанных витаминов синтезируются в организме здорового человека. При наступлении тяжёлых условий, таких как заболевания, травмы, пищевых отравления – синтез прекращается. Из-за этого – проявления авитаминоза возникают неожиданно, и успевают причинить ощутимый вред здоровью, а также негативно повлиять на состояние кожи лица.

Профилактика дефицита витаминов, необходимых для здоровья кожи лица

Для того чтобы кожа лица оставалась как можно дольше молодой, не было преждевременных морщин, сухости кожи, а также для снижения риска инфекций – соблюдайте следующие правила:

Хронические передозировки витамина D опасны развитием ряда заболеваний и патологических состояний:

  • Кальцификация сосудов и других органов,
  • Гиперпаратиреоз,
  • Гиперкальциемия,
  • Анемия,
  • Повышение скорости костной резорбции.

Витамины, синтезируемые кишечной микрофлорой

Микрофлора кишечника является чувствительной и сложной системой. Она состоит из бифидо- и лактобактерий, благодаря чему организм может самостоятельно бороться с болезнетворными вирусами и патогенными микробами. Здоровую функцию иммунной системы поддерживает также регулярный синтез собственных витаминов – этот процесс происходит преимущественно в нижних отделах кишечника.

Какие витамины синтезируются микрофлорой?

  • Витамин К. Необходим для выработки костного белка и полноценной свертываемости крови. При недостаточности витамина человек страдает от подкожных кровоизлияний, слабости сосудов, носовых кровотечений (недостаток развивается у пациентов с дисбактериозом и патологиями ЖКТ).
  • Витамин В3. Контролирует окислительные процессы и регенерацию клеток, а также работу нервной системы. Влияет на пищеварение, состояние сердца и сосудов, регулирует уровень АД, очищает организм от продуктов распада и снижает показатели холестерина в крови. Синтез происходит при достаточном поступлении витаминов В2 и В6.
  • Витамин В9 (фолиевая кислота). Участвует в формировании кровяных телец, укрепляет иммунитет, регулирует деятельность головного и костного мозга. Крайне необходим беременным женщинам, для правильного формирования головного мозга и нервной системы у плода.
  • Витамин В12. Отвечает за метаболизм жиров, углеводов и белков, принимает участие в формировании и функционировании центральной нервной системы, контролирует синтез ДНК и РНК. Витамин является водорастворимым. Его недостатком страдают женщины во время беременности, люди с заболеваниями ЖКТ и злоупотребляющие алкоголем.

За синтез каждого витамина отвечают разные участки кишечника, но большинство продуцируется в толстом отделе кишки. Чем лучше сбалансирован рацион питания, тем большее количество витаминов синтезируется кишечной микрофлорой.

Нужно ли пополнять запасы витаминов извне?

Витаминов, синтезируемых кишечником, может быть недостаточно для полноценного функционирования организма человека.

Так, витамины группы B, вырабатываются, преимущественно, в недостаточных количествах:

  • В12 вырабатывается в малом объеме, которого не хватает для нормальной жизнедеятельности. Его запасы пополняются путем употребления телячьей печени, лосося, морепродуктов, мяса говядины и баранины.
  • Витамином В3 насыщены орехи, все зеленые овощи, кукуруза, гречневая крупа, печень, бобы, яйца и помидоры.
  • Фолиевой кислотой (В 9 ) богаты злаковые, свежие фрукты и овощи, молоко, овсяная крупа, рыба, мясо и яйца.

А вот витамин К синтезируется в достаточных количествах, поэтому при отсутствии заболеваний ЖКТ и нормальном балансе микрофлоры пополнять его запасы нет необходимости.

Причины ухудшения состояния микрофлоры

Факторы, из-за которых общее состояние микрофлоры кишечника ухудшается, зачастую провоцируются самим человеком, но иногда баланс нарушается по причине острых и хронических заболеваний. Наиболее распространенными причинами развивающегося дисбактериоза считаются:

  • злоупотребление антибактериальными препаратами – использование этой группы лекарств показано при многих инфекционных заболеваниях, однако их бесконтрольный и необоснованный прием приводит к уничтожению не только патогенных, но и полезных бактерий в кишечнике;
  • вредные привычки – курение и злоупотребление спиртными напитками;
  • перекусы на бегу, преимущественно сухой пищей – бутербродами, фастфудом, сладкой и углеводной пищей;
  • отсутствие в рационе белка и растительной клетчатки – именно эти элементы составляют основу правильного пищеварения и роста полезной микрофлоры;
  • гормональный сбой в организме, эндокринные нарушения;
  • слишком частое очищение кишечника – в группу риска входят женщины, принимающие препараты для похудения на основе слабительных компонентов;
  • инфекционные и аллергические заболевания.

Также баланс полезной микрофлоры нарушается в результате регулярных стрессов, недосыпа, хронической усталости. Дисбактериоз часто диагностируется у жителей неблагоприятных экологических районов, которые вынуждены пить некачественную воду или постоянно вдыхать загазованный воздух вблизи промышленных предприятий.

Как восстановить функции микрофлоры?

В первую очередь, для восстановления полезной микрофлоры кишечника и устранения признаков дисбактериоза, необходимо выявить его причины. Для этого рекомендуется обратиться к гастроэнтерологу и, при острых показаниях, к инфекционисту.

Если патология вызвана размножением патогенных микробов, врач назначит антибактериальные препараты пенициллинового ряда или Метронидазол.

Также больному показан прием лекарств на основе культур активных микроорганизмов, пищевых добавок, сорбентов и прочих медикаментов:

  • Пробиотики – это средства с активными бактериальными культурами, например, Линекс. Их назначают при дисбактериозе, развившемся на фоне приема антибиотиков.
  • Пребиотики – препараты с содержанием питательных субстратов для увеличения полезной микрофлоры. Они улучшают функции кишечника и восстанавливают нормальный баланс – это Лактофильтрум, Лактусан, Прелакс.
  • Синбиотики – это сочетание пробиотиков и пребиотиков в одном препарате. К ним относятся Энтерол, Биофлор, Максилак, Нарине.
  • Средства от метеоризма, например, Эспумизан;
  • Энтеросорбенты, выводящие из организма продукты распада и токсины – Энтеросгель, Смекта, Активированный уголь, Энтерол;
  • Препараты для восстановления моторики желудка и кишечника – Имодиум, Дебридат;
  • Гепатопротекторы и желчегонные – Карсил, Эссенциале, Аллохол, Гепабене;
  • Ферменты для восстановления пищеварительной функции – Креон, Пензитал.

Какие препараты нужны конкретному пациенту – определит врач, исходя из клинических симптомов и результатов анализов (кал на копрограмму и дисбактериоз).

Основные правила диетического питания:

  • приемы пищи должны соответствовать режиму, то есть проводиться в одно и то же время;
  • диета должна включать пищевые волокна;
  • в меню обязательно включаются молочные продукты, обогащенные комплексом бифидо- и лактобактерий;
  • меню разрабатывается по индивидуальной схеме, с учетом списка непереносимости каких-либо продуктов.

Пребиотики – это олиго- и полисахариды, содержащиеся в продуктах: овощах, фруктах, злаковых. Они не всасываются, а ферментируются в тканях кишечника, обеспечивая источник энергии для размножения полезных лакто- и бифидобактерий. Получить эти вещества можно, употребляя лук, чеснок, морковь, тыкву, кабачки, кашу из овсяной крупы.

Олигосахариды с фруктозой содержатся в яблоках, грушах, абрикосах, бананах, ягодах и гранатах. Полисахаридом инулином богаты цикорий, корень лопуха, чеснок.

Употребляя пребиотики, можно обеспечить питание полезным бактериям, уничтожить патогенную флору кишечника, повысить всасывание питательных веществ.

Пробиотики в большом количестве содержатся в молочных и кисломолочных продуктах: кефир, йогурты, кумыс, ацидофилин, Активия, Актимель. Их ежедневное употребление оказывает антагонистическое действие на патогенную флору, смещая баланс в сторону полезных бактерий. Также они подавляют продукцию серотонина, что предотвращает аллергические реакции.

Со списком разрешенных продуктов во время восстановления нормальной микрофлоры кишечника можно ознакомиться в таблице.

Какой витамин синтезируется микрофлорой кишечника

Какие витамины синтезируют бактерии в тонком и толстом кишечнике

Состояние кишечника и его микрофлоры отражается на работе всего организма. Помимо функции пищеварения кишечник имеет и другие важные свойства. Одно из них — это синтез некоторых необходимых витаминов. Важно поддерживать здоровье кишечника и микрофлоры, так как именно от них зависит состояние иммунитета и даже внешний вид человека. Для чего нужны бактерии в кишечнике и какие витамины синтезируют бактерии в толстом кишечнике — важные темы для тех, кто заботится о своем здоровье.

Роль микрофлоры кишечника

В кишечнике существуют как полезные бактерии, так и вредные (фото: e-torg.info)

В кишечнике людей насчитывается около 500 разновидностей бактерий, как полезных, так и вредных для здоровья. Общий вес бактерий может достигать 3-х килограммов. У здорового человека насчитывается примерно около 60% полезных микроорганизмов из общего количества. Поэтому если этот уровень падает, и болезнетворные бактерии начинают активно размножаться, падает иммунитет, человек болеет, появляются проблемы с пищеварением.

Микрофлора кишечника участвует в таких процессах:

  • способствует нормализации перистальтики кишечника;
  • вырабатывает иммуноглобулин, укрепляет иммунитет;
  • подавляет рост патогенной микрофлоры;
  • способствует детоксикации организма, повышает защиту от раковых клеток;
  • участвует в синтезе биологически активных соединений и витаминов;
  • регулирует обмен веществ.

Какие факторы отражаются на здоровье кишечника

Правильное питание играет немаловажную роль для состояния кишечника (фото: otvetymamam.ru)

Состав микрофлоры человека зависит от среды ее обитания, а именно кишечника. Какие бактерии будут активно размножаться в организме, зависит от общего состояния пищеварительных органов и от употребляемой человеком пищи. Патологические бактерии развиваются при наличии большого количества белковой пищи. Полезные микроорганизмы предпочитают растительные продукты с большим содержанием пищевых волокон, углеводов и полисахаридов. Поэтому без употребления овощей, фруктов и круп, в которых содержится много клетчатки, микрофлора в кишечнике не сможет эффективно противостоять патологическим микроорганизмам.

Рацион современного человека в большей степени состоит из рафинированных продуктов. Многие продукты питания содержат вредные пищевые добавки. В результате страдает микрофлора кишечника, что препятствует ей синтезировать и усваивать витамины.

Заболевания желудочно-кишечного тракта, дисбактериоз пагубно влияют на флору кишечника. Развитию патологических бактерий способствует прием некоторых лекарственных препаратов, особенно, антибиотиков. Лечение многими гормональными средствами и контрацептивами также вредит состоянию кишечника.

Употребление пребиотиков и пробиотиков способствует нормализации микрофлоры. Это, в свою очередь, повышает количество синтезированных витаминов и укрепляет иммунитет.

Пробиотики — это живые микроорганизмы, которые населяют кишечник. Они способствуют улучшению здоровья человека. Известными препаратами с пробиотиками являются Линекс, Бифидумбактерин Форте, Бифиформ. Пребиотики — органические вещества, которые способствуют размножению полезных микроорганизмов в кишечниках. Содержатся в некоторых продуктах — молочная продукция, квашеная капуста, маринованные огурцы, хлеб, соевый соус, вино

Какие витамины синтезируются в кишечнике

В кисломолочных продуктах содержатся полезные для человека бактерии (фото: weekend.rambler.ru)

Витамины жизненно необходимы для организма. Их дефицит отражается на работе всех органов. Некоторые витамины поступают только вместе с пищей, иные организм способен продуцировать сам. Например, некоторые полезные вещества выделяются в кишечнике человека. В синтезе витаминов в большей степени принимают участие микрофлора тонкого и толстого кишечника.

Какие витамины синтезируются микрофлорой кишечника:

  • В12. Витамин, в небольшом количестве синтезирующийся в кишечнике, очень важен для здоровья человека. Он отвечает за метаболизм жиров, белков и углеводов и синтез ДНК и РНК, помогает в работе нервной системы. Гиповитаминозом В12 чаще страдают люди пожилого возраста, беременные женщины, при заболеваниях желудочно-кишечного тракта (ЖКТ), печени, а также курящие и злоупотребляющие алкоголем. Витамин относится к водорастворимым. Он не накапливается в организме, а микрофлора кишечника вырабатывает его в недостаточном количестве. Поэтому важно употреблять пищу, обогащенную этим веществом (телячья печень, лосось, говядина, баранина, большинство морепродуктов). Также недостаток витамина В12 будет ощущаться при дисбактериозе кишечника.
  • В3. Без этого витамина в организме невозможны окислительно-восстановительные процессы, нормальная работа высшей нервной системы. Витамин имеет влияние на пищеварение, сердечно-сосудистую систему, положительно отражается на состоянии кровеносных сосудов, регулирует артериальное давление, понижает уровень холестерина и способствует очищению организма от токсинов. Этот витамин синтезируется микрофлорой кишечника при употреблении пищи с аминокислотой триптофаном и витаминами В2 и В6. Витамином богаты такие продукты: орехи, печень, мясо, яйца, бобовые, помидоры. А также картофель, кукуруза, гречка и овощи зеленого цвета.
  • В9 (фолиевая кислота). За выработку и всасывание витамина отвечает тонкая кишка. Вещество принимает активное участие в процессе кроветворения, влияет на образование белых кровяных телец, регулирует работу печени, кишечника, укрепляет защитные силы организма. Известно, что без фолиевой кислоты нарушается обмен веществ, понижается деятельность головного мозга, страдает костный мозг. Крайне важно поддерживать нормальный уровень витамина беременным женщинам, так как он принимает участие в формировании нервной системы плода. Фолиевая кислота содержится в бобовых, фруктах и овощах, злаках, гречневой и овсяной крупах. А также цитрусах, яйцах, мясе, рыбе, молоке.
  • К2. Витамин способствует выработке белка в костях, а также необходим для свертываемости крови. При его недостатке случаются кровотечения, присутствует кровь в кале, образовываются подкожные кровоизлияния. Если кишечник находится в здоровом состоянии, то витамин К вырабатывается в достаточном количестве, поэтому нет необходимости принимать дополнительные вещества. Человек испытывает недостаток в витамине при дисбактериозе и заболеваниях кишечника. Дополнительно витамин можно получить, употребляя шпинат, все виды капусты, отруби пшеницы, киви, бананы. А также молоко, мясо, яйца, оливковое масло.

В организме человека кишечник выполняет множество функций. Кроме переваривания пищи, орган способствует повышению иммунитета, защищает от развития раковых клеток. Также известно, что микрофлора синтезирует некоторые важные витамины, отвечает за процесс их усвоения. От состояния кишечника зависит общее здоровье организма. Правильное питание с преобладанием растительных пищевых волокон, употребление пробиотиков и пребиотиков способствует размножению полезных микроорганизмов, которые будут стоять на страже здоровья.

В видео ниже рассказывается, что такое дисбактериоз и как с ним бороться.

Кишечная микрофлора и значение пребиотиков для ее функционирования

Микрофлора кишечника человека является составляющей человеческого организма и выполняет многочисленные жизненно важные функции. Общая численность микроорганизмов, обитающих в различных частях макроорганизма, приблизительно на два порядка превышает численность его собственных клеток и составляет около 1014–15. Совокупный вес микроорганизмов человеческого тела составляет около 3–4 кг. Наибольшее число микроорганизмов приходится на желудочно-кишечный тракт (ЖКТ), включая ротоглотку (75–78%), остальные заселяют мочеполовые пути (до 2–3% у мужчин и до 9–12% у женщин) и кожные покровы.

У здоровых лиц в кишечнике насчитывается более 500 видов микроорганизмов. Общая масса микрофлоры кишечника составляет от 1 до 3 кг. В разных отделах ЖКТ количество бактерий различно, большинство микроорганизмов локализованы в толстой кишке (около 1010–12 КОЕ/мл, что составляет 35–50% ее содержимого). Состав кишечной микрофлоры достаточно индивидуален и формируется с первых дней жизни ребенка, приближаясь к показателям взрослого к концу 1-го — 2-му году жизни, претерпевая некоторые изменения в пожилом возрасте (табл. 1). У здоровых детей в толстой кишке обитают представители факультативно-анаэробных бактерий рода Streptococcus, taphylococcus, Lactobacillus, nterobacteriacae, Candida и более чем 80% биоценоза занимают анаэробные бактерии, чаще грамположительные: пропионобактерии, вейлонеллы, эубактерии, анаэробные лактобациллы, пептококки, пептострептококки, а также грамотрицательные бактероиды и фузобактерии.

Распределение микроорганизмов по ходу ЖКТ имеет достаточно строгие закономерности и тесно коррелирует с состоянием пищеварительной системы (табл. 2). Большинство микроорганизмов (около 90%) присутствуют в тех или иных отделах постоянно и являются основной (резидентной) микрофлорой; около 10% составляет факультативная (или добавочная, сопутствующая микрофлора); и 0,01–0,02% приходится на долю случайных (или транзиторных, остаточных) микроорганизмов. Условно принято считать, что главная микрофлора толстой кишки представлена анаэробными бактериями, тогда как аэробные бактерии составляют сопутствующую микрофлору. Стафилококки, клостридии, протей и грибы относятся к остаточной микрофлоре. Помимо этого, в толстой кишке выявляются около 10 кишечных вирусов и некоторые представители непатогенных простейших. Облигатных и факультативных анаэробов в толстой кишке всегда на порядок больше, чем аэробов, причем строгие анаэробы непосредственно адгезированы на эпителиоцитах, выше располагаются факультативные анаэробы, далее — аэробные микроорганизмы. Таким образом, анаэробные бактерии (в основном бифидобактерии и бактероиды, суммарная доля которых составляет около 60% от общего количества анаэробных бактерий) являются наиболее постоянной и многочисленной группой микрофлоры кишечника, осуществляющей основные функции.

Вся совокупность микроорганизмов и макроорганизм составляют своеобразный симбиоз, где каждый извлекает выгоды для своего существования и оказывает влияние на партнера. Функции кишечной микрофлоры по отношению к макроорганизму реализуются как локально, так и на системном уровне, при этом различные виды бактерий вносят свой вклад в это влияние. Микрофлора пищеварительного тракта выполняет следующие функции.

  • Морфокинетические и энергетические эффекты (энергообеспечение эпителия, регулирование перистальтики кишечника, тепловое обеспечение организма, регуляция дифференцировки и регенерации эпителиальных тканей).
  • Формирование защитного барьера слизистой оболочки кишечника, подавление роста патогенной микрофлоры.
  • Иммуногенная роль (стимуляция иммунной системы, стимуляция местного иммунитета, в том числе выработки иммуноглобулинов).
  • Модуляция функций цитохромов Р450 в печени и продукция Р450-схожих цитохромов.
  • Детоксикация экзогенных и эндогенных токсических субстанций и соединений.
  • Продукция разнообразных биологически активных соединений, активация некоторых лекарственных препаратов.
  • Мутагенная/антимутагенная активность (повышение резистентности эпителиальных клеток к мутагенам (канцерогенам), разрушение мутагенов).
  • Регуляция газового состава полостей.
  • Регуляция поведенческих реакций.
  • Регуляция репликации и экспрессии генов прокариотических и эукариотических клеток.
  • Регуляция запрограммированной гибели эукариотических клеток (апоптоза).
  • Хранилище микробного генетического материала.
  • Участие в этиопатогенезе заболеваний.
  • Участие в водно-солевом обмене, поддержание ионного гомеостаза организма.
  • Формирование иммунологической толерантности к пищевым и микробным антигенам.
  • Участие в колонизационной резистентности.
  • Обеспечение гомеостаза симбиотических взаимоотношений прокариотических и эукариотических клеток.
  • Участие в обмене веществ: метаболизме белков, жиров (поставка субстратов липогенеза) и углеводов (поставка субстратов глюконеогенеза), регуляция желчных кислот, стероидов и др. макромолекул.

Так, бифидобактерии за счет ферментации олиго- и полисахаридов продуцируют молочную кислоту и ацетат, которые обеспечивают бактерицидную среду, секретируют вещества-ингибиторы роста патогенных бактерий, что повышает резистентность организма ребенка к кишечным инфекциям. Модуляции иммунного ответа ребенка бифидобактериями также выражаются в снижении риска развития пищевой аллергии.

Лактобациллы уменьшают активность пероксидазы, оказывая антиоксидантный эффект, обладают противоопухолевой активностью, стимулируют продукцию иммуноглобулина А (IgA), подавляют рост патогенной микрофлоры и стимулируют рост лакто- и бифидофлоры, оказывают противовирусное действие.

Из представителей энтеробактерий наиболее важное значение имеет Escherichia coli M17, которая вырабатывает колицин В, за счет чего подавляет рост шигелл, сальмонелл, клебсиелл, серраций, энтеробактеров и оказывает незначительное влияние на рост стафилококков и грибов. Также кишечная палочка способствуют нормализации микрофлоры после антибактериальной терапии и воспалительных и инфекционных заболеваний.

Энтерококки (Enterococcus avium, faecalis, faecium) стимулируют местный иммунитет за счет активации В-лимфоцитов и повышения синтеза IgA, высвобождения интерлейкинов-1β и -6, γ-интерферона; обладают противоаллергическим и антимикотическим действием.

Кишечные палочки, бифидо- и лактобактерии выполняют витаминообразующую функцию (участвуют в синтезе и всасывании витаминов К, группы В, фолиевой и никотиновой кислот). По способности синтезировать витамины кишечная палочка превосходит все остальные бактерии кишечной микрофлоры, синтезируя тиамин, рибофлавин, никотиновую и пантотеновую кислоты, пиридоксин, биотин, фолиевую кислоту, цианокобаламин и витамин К. Бифидобактерии синтезируют аскорбиновую кислоту, бифидо- и лактобактерии способствуют всасыванию кальция, витамина D, улучшают всасывание железа (благодаря созданию кислой среды).

Процесс пищеварения условно можно разделить на собственное (дистанционное, полостное, аутолитическое и мембранное), осуществляемое ферментами организма, и симбиозное пищеварение, происходящее при содействии микрофлоры. Микрофлора кишечника человека участвует в ферментации нерасщепленных ранее компонентов пищи, главным образом углеводов, таких, как крахмал, олиго- и полисахариды (в том числе и целлюлоза), а также белков и жиров.

Не всосавшиеся в тонкой кишке белки и углеводы в слепой кишке подвергаются более глубокому бактериальному расщеплению — преимущественно кишечной палочкой и анаэробами. Конечные продукты, образующиеся в результате процесса бактериальной ферментации, оказывают различное влияние на состояние здоровья человека. Например, бутират необходим для нормального существования и функционирования колоноцитов, является важным регулятором их пролиферации и дифференцировки, а также всасывания воды, натрия, хлора, кальция и магния. Вместе с другими летучими жирными кислотами он оказывает влияние на моторику толстой кишки, в одних случаях ускоряя ее, в других — замедляя. При расщеплении полисахаридов и гликопротеинов внеклеточными микробными гликозидазами образуются, помимо прочего, моносахариды (глюкоза, галактоза и т. д.), при окислении которых в окружающую среду выделяется в виде тепла не менее 60% их свободной энергии.

Среди важнейших системных функций микрофлоры — поставка субстратов глюконеогенеза, липогенеза, а также участие в метаболизме белков и рециркуляции желчных кислот, стероидов и других макромолекул. Превращение холестерина в не всасывающийся в толстой кишке копростанол и трансформация билирубина в стеркобилин и уробилин возможны только при участии бактерий, находящихся в кишечнике.

Протективная роль сапрофитной флоры реализуется как на местном, так и на системном уровнях. Создавая кислую среду, благодаря образованию органических кислот и снижению рН среды толстой кишки до 5,3–5,8, симбионтная микрофлора защищает человека от колонизации экзогенными патогенными микроорганизмами и подавляет рост уже имеющихся в кишечнике патогенных, гнилостных и газообразующих микроорганизмов. Механизм этого явления заключается в конкуренции микрофлоры за питательные вещества и участки связывания, а также в выработке нормальной микрофлорой определенных ингибирующих рост патогенов субстанций, обладающих бактерицидной и бактериостатической активностью, в том числе антибиотикоподобных. Низкомолекулярные метаболиты сахаролитической микрофлоры, в первую очередь летучие жирные кислоты, лактат и др., обладают заметным бактериостатическим эффектом. Они способны ингибировать рост сальмонелл, дизентерийных шигелл, многих грибов.

Также кишечная микрофлора усиливает местный кишечный иммунологический барьер. Известно, что у стерильных животных в lamina propria определяется очень малое количество лимфоцитов, кроме того, у этих животных наблюдается иммунодефицит. Восстановление нормальной микрофлоры быстро приводит к увеличению количества лимфоцитов в слизистой кишечника и исчезновению иммунодефицита. Сапрофитные бактерии в определенной степени обладают способностью модулировать уровень фагоцитарной активности, снижая его у людей, страдающих аллергией и, наоборот, повышая его у здоровых индивидуумов.

Таким образом, микрофлора ЖКТ не только формирует местный иммунитет, но и играет огромную роль в становлении и развитии иммунной системы ребенка, а также поддерживает ее активность у взрослого. Резидентная флора, особенно некоторые микроорганизмы, обладают достаточно высокими иммуногенными свойствами, что стимулирует развитие лимфоидного аппарата кишечника и местный иммунитет (в первую очередь за счет усиления продукции ключевого звена системы местного иммунитета — секреторного IgA), а также приводит к системному повышению тонуса иммунной системы, с активацией клеточного и гуморального звеньев иммунитета. Системная стимуляция иммунитета — одна из важнейших функций микрофлоры. Известно, что у безмикробных лабораторных животных не только подавлен иммунитет, но и происходит инволюция иммунокомпетентных органов. Поэтому при нарушениях микроэкологии кишечника, дефиците бифидофлоры и лактобацилл, беспрепятственном бактериальном заселении тонкой и толстой кишки возникают условия для снижения не только местной защиты, но и резистентности организма в целом.

Несмотря на достаточную иммуногенность, сапрофитные микроорганизмы не вызывают реакций иммунной системы. Возможно, это происходит потому, что сапрофитная микрофлора является своего рода хранилищем микробных плазмидных и хромосомных генов, обмениваясь генетическим материалом с клетками хозяина. Реализуются внутриклеточные взаимодействия путем эндоцитоза, фагоцитоза и пр. При внутриклеточных взаимодействиях достигается эффект обмена клеточным материалом. В результате представители микрофлоры приобретают рецепторы и другие антигены, присущие хозяину. Это делает их «своими» для иммунной системы макроорганизма. Эпителиальные ткани в результате такого обмена приобретают бактериальные антигены.

Обсуждается вопрос о ключевом участии микрофлоры в обеспечении противовирусной защиты хозяина. Благодаря феномену молекулярной мимикрии и наличию рецепторов, приобретенных от эпителия хозяина, микрофлора становится способной к перехвату и выведению вирусов, обладающих соответствующими лигандами.

Таким образом, наряду с низким рН желудочного сока, двигательной и секреторной активностью тонкой кишки, микрофлора ЖКТ относится к неспецифическим факторам защиты организма.

Важной функцией микрофлоры является синтез ряда витаминов. Человеческий организм получает витамины в основном извне — с пищей растительного или животного происхождения. Поступающие витамины в норме всасываются в тонкой кишке и частично утилизируются кишечной микрофлорой. Микроорганизмы, населяющие кишечник человека и животных, продуцируют и утилизируют многие витамины. Примечательно, что наиболее важную роль для человека в этих процессах играют микробы тонкой кишки, так как продуцируемые ими витамины могут эффективно всасываться и поступать в кровоток, тогда как витамины, синтезирующиеся в толстой кишке, практически не всасываются и для человека оказываются недоступными. Подавление микрофлоры (например, антибиотиками) снижает и синтез витаминов. Наоборот, создание благоприятных для микроорганизмов условий, например при употреблении в пищу достаточного количества пребиотиков, повышает обеспеченность макроорганизма витаминами.

Наиболее изучены в настоящее время аспекты, связанные с синтезом кишечной микрофлорой фолиевой кислоты, витамина В12 и витамина К.

Фолиевая кислота (витамин В9), поступая с продуктами питания, эффективно всасывается в тонкой кишке. Синтезирующийся в толстой кишке представителями нормальной кишечной микрофлоры фолат идет исключительно для ее собственных нужд и не утилизируется макроорганизмом. Тем не менее синтез фолата в толстой кишке может иметь большое значение для нормального состояния ДНК колоноцитов.

Кишечные микроорганизмы, синтезирующие витамин В12, обитают как в толстой, так и в тонкой кишке. Среди этих микроорганизмов наиболее активны в данном аспекте представители Pseudomonas и Klebsiella sp. Однако возможностей микрофлоры для полной компенсации гиповитаминоза В12 оказывается недостаточно.

С содержанием в просвете толстой кишки фолата и кобаламина, полученных с пищей или синтезированных микрофлорой, связана способность эпителия кишечника противостоять процессам канцерогенеза. Предполагается, что одной из причин более высокой частоты опухолей толстой кишки, по сравнению с тонкой, является недостаток цитопротекторных составляющих, большинство из которых всасывается в средних отделах ЖКТ. Среди них — витамин В12 и фолиевая кислота, которые совместно определяют стабильность клеточных ДНК, в частности ДНК клеток эпителия толстой кишки. Даже незначительный дефицит этих витаминов, не вызывающий анемию или другие тяжелые последствия, тем не менее приводит к значимым аберрациям в молекулах ДНК колоноцитов, способным стать основой канцерогенеза. Известно, что недостаточное поступление к колоноцитам витаминов В6, В12 и фолиевой кислоты ассоциируется с повышенной частотой рака толстой кишки в популяции. Дефицит витаминов приводит к нарушению процессов метилирования ДНК, мутациям и, как следствие, раку толстой кишки. Риск толстокишечного канцерогенеза повышается при низком потреблении пищевых волокон и овощей, обеспечивающих нормальное функционирование кишечной микрофлоры, синтезирующей трофические и протективные в отношении толстой кишки факторы.

Витамин К существует в нескольких разновидностях и необходим человеческому организму для синтеза различных кальцийсвязывающих белков. Источником витамина К1, филохинона, являются продукты растительного происхождения, а витамин К2, группа соединений менахинонов, синтезируется в тонкой кишке человека. Микробный синтез витамина К2 стимулируется при недостатке филохинона в диете и вполне способен его компенсировать. В то же время недостаточность витамина К2 при сниженной активности микрофлоры плохо корригируется диетическими мероприятиями. Таким образом, синтетические процессы в кишечнике являются приоритетными для обеспечения макроорганизма этим витамином. Витамин К синтезируется и в толстой кишке, но используется преимущественно для потребностей микрофлоры и колоноцитов.

Кишечная микрофлора принимает участие в детоксикации экзогенных и эндогенных субстратов и метаболитов (аминов, меркаптанов, фенолов, мутагенных стероидов и др.) и, с одной стороны, представляет собой массивный сорбент, выводя из организма токсические продукты с кишечным содержимым, а с другой — утилизирует их в реакциях метаболизма для своих нужд. Помимо этого, представители сапрофитной микрофлоры продуцируют на основе конъюгатов желчных кислот эстрагеноподобные субстанции, оказывающие влияние на дифференцировку и пролиферацию эпителиальных и некоторых других тканей путем изменения экспрессии генов или характера их действия.

Итак, взаимоотношения микро- и макроорганизма носят сложный характер, реализующийся на метаболическом, регуляторном, внутриклеточном и генетическом уровне. Однако нормальное функционирование микрофлоры возможно только при хорошем физиологическом состоянии организма и в первую очередь нормальном питании.

Питание микроорганизмов, населяющих кишечник, обеспечивается за счет нутриентов, поступающих из вышележащих отделов ЖКТ, которые не перевариваются собственными ферментативными системами и не всасываются в тонкой кишке. Эти вещества необходимы для обеспечения энергетических и пластических потребностей микроорганизмов. Способность использовать нутриенты для своей жизнедеятельности зависит от ферментативных систем различных бактерий.

В зависимости от этого условно выделяют бактерии с преимущественно сахаролитической активностью, основным энергетическим субстратом которых являются углеводы (характерно в основном для сапрофитной флоры), с преимущественной протеолитической активностью, использующих белки для энергетических целей (характерно для большинства представителей патогенной и условно-патогенной флоры), и смешанной активностью. Соответственно, преобладание в пище тех или иных нутриентов, нарушение их переваривания будет стимулировать рост различных микроорганизмов.

Углеводные нутриенты особенно необходимы для жизнедеятельности нормальной кишечной микрофлоры. Ранее эти компоненты пищи называли «балластными», предполагая, что они не имеют какого-либо существенного значения для макроорганизма, однако по мере изучения микробного метаболизма стало очевидно их значение не только для роста кишечной микрофлоры, но для здоровья человека в целом. Согласно современному определению, пребиотиками называют частично или полностью не перевариваемые компоненты пищи, которые избирательно стимулируют рост и/или метаболизм одной или нескольких групп микроорганизмов, обитающих в толстой кишке, обеспечивая нормальный состав кишечного микробиоценоза. Свои энергетические потребности микроорганизмы толстой кишки обеспечивают за счет анаэробного субстратного фосфорилирования, ключевым метаболитом которого является пировиноградная кислота (ПВК). ПВК образуется из глюкозы в процессе гликолиза. Далее, в результате восстановления ПВК, образуется от одной до четырех молекул аденозинтрифосфата (АТФ). Последний этап приведенных выше процессов обозначается как брожение, которое может идти различными путями с образованием различных метаболитов.

Гомоферментативное молочное брожение характеризуется преимущественным образованием молочной кислоты (до 90%) и характерно для лактобактерий и стрептококков толстой кишки. Гетероферментативное молочное брожение, при котором образуются и другие метаболиты (в том числе уксусная кислота), присуще бифидобактериям. Спиртовое брожение, ведущее к образованию углекислого газа и этанола, является побочным метаболическим эффектом у некоторых представителей Lactobacillus и Clostridium. Отдельные виды энтеробактерий (E. coli) и клостридий получают энергию в результате муравьинокислого, пропионового, маслянокислого, ацетонобутилового или гомоацетатного видов брожения.

В результате микробного метаболизма в толстой кишке образуются молочная кислота, короткоцепочечные жирные кислоты (С2 — уксусная; С3 — пропионовая; С4 — масляная/изомасляная; С5 — валериановая/изовалериановая; С6 — капроновая/изокапроновая), углекислый газ, водород, вода. Углекислый газ в большой степени преобразуется в ацетат, водород всасывается и выводится через легкие, а органические кислоты (в первую очередь жирные короткоцепочечные) утилизируются макроорганизмом. Нормальная микрофлора толстой кишки, перерабатывая не переваренные в тонкой кишке углеводы, производит короткоцепочечные жирные кислоты с минимальным количеством их изоформ. В то же время при нарушении микробиоценоза и увеличении доли протеолитической микрофлоры указанные жирные кислоты начинают синтезироваться из белков преимущественно в виде изоформ, что отрицательно сказывается на состоянии толстой кишки, с одной стороны, и может быть диагностическим маркером — с другой.

Помимо этого, различные представители сапрофитной флоры имеют свои потребности в определенных нутриентах, объясняющиеся особенностями их метаболизма. Так, бифидобактерии расщепляют моно-, ди-, олиго- и полисахариды, используя их как энергетический и пластический субстрат. При этом они могут ферментировать белки, в том числе и для энергетических целей; не требовательны к поступлению с пищей большинства витаминов, но нуждаются в пантотенатах.

Лактобактерии также используют различные углеводы для энергетических и пластических целей, однако плохо расщепляют белки и жиры, поэтому нуждаются в поступлении извне аминокислот, жирных кислот, а также витаминов.

Энтеробактерии расщепляют углеводы с образованием углекислого газа, водорода и органических кислот. При этом существуют лактозонегативные и лактозопозитивные штаммы. Также они могут утилизировать белки и жиры, поэтому мало нуждаются во внешнем поступлении аминокислот, жирных кислот и большинства витаминов.

Очевидно, что питание сапрофитной микрофлоры и ее нормальное функционирование принципиально зависит от поступления к ней не переваренных углеводов (ди-, олиго- и полисахаридов) для энергетических целей, а также белков, аминокислот, пуринов и пиримидинов, жиров, углеводов, витаминов и минералов — для пластического обмена. Залогом поступления к бактериям необходимых нутриентов является рациональное питание макроорганизма и нормальное течение пищеварительных процессов.

Хотя моносахариды могут легко утилизироваться микроорганизмами толстой кишки, к пребиотикам их не относят.

В нормальных условиях кишечная микрофлора не потребляет моносахариды, которые должны полностью всасываться в тонкой кишке. Пребиотики включают некоторые дисахариды, олигосахариды, полисахариды и достаточно гетерогенную группу соединений, в которой присутствуют и поли- и олигосахариды, которую обозначили как пищевые волокна. Из пребиотиков в женском молоке присутствует лактоза и олигосахариды.

Лактоза (молочный сахар) представляет собой дисахарид, состоящий из галактозы и глюкозы. В норме лактоза расщепляется лактазой тонкой кишки до мономеров, которые практически полностью всасываются в тонкой кишке. Лишь незначительное количество нерасщепленной лактозы у детей первых месяцев жизни попадает в толстую кишку, где утилизируется микрофлорой, обеспечивая ее становление. В то же время дефицит лактазы приводит к избытку лактозы в толстой кишке и значительному нарушению состава кишечной микрофлоры и осмотической диарее.

Лактулоза — дисахарид, состоящий из галактозы и фруктозы, в молоке (женском или коровьем) отсутствует, однако в небольших количествах может образовываться при нагревании молока до температуры кипения. Лактулоза не переваривается ферментами ЖКТ, ферментируется лакто- и бифидобактериями и служит им субстратом для энергетического и пластического обмена, за счет чего способствует их росту и нормализации состава микрофлоры, увеличению объема биомассы в содержимом кишечника, что определяет ее слабительный эффект. Помимо этого, показана антикандидозная активность лактулозы и ее угнетающий эффект на сальмонелл. Полученная синтетическим путем лактулоза (дюфалак) широко используется как эффективное слабительное средство, обладающее пребиотическими свойствами. Как пребиотик детям дюфалак назначается в низких дозах, не оказывающих слабительного эффекта (по 1,5–2,5 мл 2 раза в день в течение 3–6 нед).

Олигосахариды представляют собой линейные полимеры глюкозы и других моносахаров с общей длиной цепи не более 10. По химической структуре выделяют галакто-, фрукто-, фукозил-олигосахариды и др. Концентрация олигосахаридов в женском молоке относительно невелика, не более 12–14 г/л, однако их пребиотический эффект весьма значителен. Именно олигосахариды сегодня рассматриваются как основные пребиотики женского молока, обеспечивающие как становление нормальной микрофлоры кишечника ребенка, так и ее поддержание в дальнейшем. Важным является то обстоятельство, что олигосахариды присутствуют в значимых концентрациях только в женском молоке и отсутствуют, в частности, в коровьем. Следовательно, в состав адаптированных молочных смесей для искусственного вскармливания здоровых детей должны добавляться пребиотики (галакто- и фруктосахариды).

Полисахариды представляют собой длинноцепочечные углеводы в основном растительного происхождения. Инулин, содержащий фруктозу, в больших количествах присутствует в артишоках, клубнях и корнях георгинов и одуванчиков; утилизируется бифидо- и лактобактериями, способствует их росту. Помимо этого, инулин повышает всасывание кальция и влияет на метаболизм липидов, снижая риск развития атеросклероза.

Пищевые волокна — большая гетерогенная группа полисахаридов, наиболее известными из которых являются целлюлоза и гемицеллюлоза. Целлюлоза — неразветвленный полимер глюкозы, а гемицеллюлоза — полимер глюкозы, арабинозы, глюкуроновой кислоты и ее метилового эфира. Помимо функции субстрата для питания лакто- и бифидофлоры и опосредованно поставщика короткоцепочечных жирных кислот для колоноцитов, пищевые волокна оказывают и другие важные эффекты. Они обладают высокой адсорбционной способностью и удерживают воду, что приводит к повышению осмотического давления в полости кишки, увеличению объема фекалий, ускорения пассажа по кишечнику, что обусловливает слабительный эффект.

В средних количествах (1–1,9 г/100 г продукта) пищевые волокна содержатся в моркови, сладком перце, петрушке (в корне и зелени), редьке, репе, тыкве, дыне, черносливе, цитрусовых, бруснике, фасоли, гречневой, перловой крупе, «Геркулесе», ржаном хлебе.

Высокое содержание (2–3 г/100 г продукта) пищевых волокон характерно для чеснока, клюквы, красной и черной смородины, черноплодной рябины, ежевики, овсяной крупы, хлеба из белково-отрубной муки.

Наибольшее же их количество (более 3 г/100 г) содержится в укропе, кураге, клубнике, малине, чае (4,5 г/100 г), овсяной муке (7,7 г/100 г), пшеничных отрубях (8,2 г/100 г), сушеном шиповнике (10 г/100 г), жареном кофе в зернах (12,8 г/100 г), овсяных отрубях (14 г/100 г). Пищевые волокна отсутствуют в рафинированных продуктах.

Несмотря на очевидную значимость пребиотиков для питания микрофлоры, благополучия ЖКТ и всего организма в целом, в современных условиях отмечается дефицит пребиотиков в питании во всех возрастных группах. В частности, взрослый человек должен съедать в сутки примерно 20–35 г пищевых волокон, тогда как в реальных условиях европеец потребляет не более 13 г в сутки. Уменьшение доли естественного вскармливания у детей первого года жизни приводит к недостатку пребиотиков, содержащихся в женском молоке.

Таким образом, пребиотики обеспечивают благополучие микрофлоры толстой кишки, здоровье толстой кишки и являются необходимым фактором здоровья человека в связи с их существенными метаболическими эффектами. Преодоление дефицита пребиотиков в современных условиях связано с обеспечением рационального питания лиц всех возрастных категорий, начиная от новорожденных и кончая людьми преклонного возраста.

Литература
  1. Ардатская М. Д., Минушкин О. Н., Иконников Н. С. Дисбактериоз кишечника: понятие, диагностические подходы и пути коррекции. Возможности и преимущества биохимического исследования кала: пособие для врачей. М., 2004. 57 с.
  2. Бельмер С. В., Гасилина Т. В. Рациональное питание и состав кишечной микрофлоры//Вопросы детской диетологии. 2003. Т. 1. № 5. С. 17–20.
  3. Доронин А. Ф., Шендеров Б. А. Функциональное питание. М.: ГРАНТЪ, 2002. 296 с.
  4. Конь И. Я. Углеводы: новые взгляды на их физиологические функции и роль в питании//Вопросы детской диетологии. 2005. Т. 3. № 1. С. 18–25.
  5. Boehm G., Fanaro S., Jelinek J., Stahl B., Marini A. Prebiotic concept for infant nutrition//Acta Paediatr Suppl. 2003; 91: 441: 64–67.
  6. Choi S. W., Friso S., Ghandour H., Bagley P. J., Selhub J., Mason J. B. Vitamin B12 deficiency induces anomalies of base substitution and methylation in the DNA of rat colonic epithelium//J. Nutr. 2004; 134 (4): 750–755.
  7. Edwards C. A., Parrett A. M. Intestinal flora during the first months of life: new perspectives//Br. J. Nutr. 2002; 1: 11–18.
  8. Fanaro S., Chierici R., Guerrini P., Vigi V. Intestinal microflora in early infancy: composition and development //Acta Paediatr. 2003; 91: 48–55.
  9. Hill M. J. Intestinal flora and endogenous vitamin synthesis//Eur. J. Cancer. Prev. 1997; 1: 43–45.
  10. Midtvedt A. C., Midtvedt T. Production of short chain fatty acids by the intestinal microflora during the first 2 years of human life//J. Pediatr. Gastroenterol. Nutr. 1992; 15: 4: 395–403.

С. В. Бельмер, доктор медицинских наук, профессор А. В. Малкоч, кандидат медицинских наук РГМУ, Москва

Микрофлора и витамины

Витамины – это биологические катализаторы. Строго в присутствии витаминов происходят все обменные процессы в клетках: переваривание пищи, синтез новых молекул, синтез ДНК и РНК.

Нормальная жизнь организма без витаминов невозможна. Отсюда и их название, от латинского слова «вита» — жизнь. Поступая в организм, они подвергаются быстрому распаду, выполнив свою функцию. Главным источником витаминов является растительная пища, есть они в рыбных и мясных продуктах.

Какие витамины синтезирует кишечная микрофлора?

Бифидобактерии вырабатывают ряд витаминов группы В, витамины К1 и К2 и улучшают усвоение других витаминов и минеральных веществ.Улучшают всасывание микро- и макроэлементов. Сочетание пробиотика и кальция оказывает защищающий эффект на опорно-двигательный аппарат.

Витамин В12 в организме не запасается и должен поступать практически

непрерывно, что и осуществляют бактерии, населяющие толстую кишку.

Если же эта функция кишечника ослаблена (состояние дисбиоза, дисбактериоза),

необходимо срочно восстановить нормальную микрофлору кишечника.

Собственная микрофлора не покрывает необходимость организма в витамине В12,

но вносит посильный вклад.

Витамин В12 играет важную роль в метаболизме жиров, синтезе ДНК и др.

Повышенная опасность дефицитных состояний по витамину В12:

— люди пожилого возраста

— беременность и лактация

— заболевания ЖКТ (панкреатит, болезнь Крона, хроническая диарея)

— чрезмерное потребление алкоголя

Витамин К, синтезируемый микрофлорой кишечника, называется менахиноном –К2.

Синтез витамина К бактериями толстого кишечника очень важен для человека. У некоторых людей в кишечнике вырабатывается до половины необходимой ежедневной дозы витамина К.

Витамин К играет основную роль в свертываемости крови, регулирует синтез белков в костях.

Последствия дефицитных состояний по витамину К:

— небольшое количество крови в стуле

— ухудшение минерализации костей

Длительные курсы лекарственных препаратов вызывают гибель полезных бактерий.

Бедная растительной клетчаткой пища также ухудшает состав микрофлоры кишечника, так как лишает полезные бактерии необходимого им питания. Длительный прием гормональных препаратов, в том числе и контрацептивных, вызывает угнетение дружественной микрофлоры; стрессовые гормоны, которые сбрасываются в пищеварительный тракт, также вызывают гибель полезных бактерий.

Профилактическая схема приема препаратов для коррекции и восстановления собственной микрофлоры и иммуностимуляции